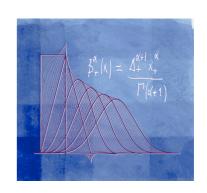


Sparse stochastic processes

Chapter 3 Mathematical context and background

Prof. Michael Unser, LIB



EDEE Course

February 2017

CONTENT

3.1 Some functions spaces

- Banach spaces
- Hilbert spaces
- Nuclear-Fréchet spaces

3.2 Dual spaces and adjoint operators

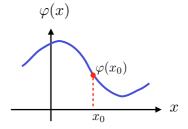
3.3 Generalized functions

- Generalized Fourier transform
- The kernel theorem
- LSI operators and convolution

On the notation

Notion of function: conventional vs. abstract interpretation

- Map $\varphi:\mathbb{R}^d o \mathbb{R}$ (or \mathbb{C}) such that $m{x} \mapsto \varphi(m{x})$
- Element of a vector space: $\varphi \in \mathcal{X}$



Generic time or space indices: t, $x = (x_1, \dots, x_d)$ or $r = (r_1, \dots, r_d)$

Equivalent notations: $\varphi, \varphi(\cdot), \varphi(x)$

Specific sample values $\varphi(\boldsymbol{x}_0), s(\boldsymbol{x}_1) \in \mathbb{R}$

vs. (continuous) linear functionals $\varphi \mapsto \langle f, \varphi \rangle \in \mathbb{R}$

Sampling property of Dirac distribution: $s(x_0) = \langle \delta(\cdot - x_0), s \rangle$

(Hypothesis: s is bounded and continuous)

3

Sets

 \mathbb{N}, \mathbb{Z}^+ Non-negative integers, including 0 \mathbb{Z} Integers \mathbb{R} Real numbers \mathbb{R}^+ Non-negative real numbers \mathbb{C} Complex numbers \mathbb{R}^d d-dimensional Euclidean space \mathbb{Z}^d d-dimensional integers

Various notations

Imaginary unit such that $j^2 = -1$ [x]Ceiling: smallest integer at least as large as x Floor: largest integer not exceeding \boldsymbol{x} $(x_1 : x_n)$ n-tuple (x_1, x_2, \dots, x_n) $\|f\|$ Norm of the function f (see Section 3.1.2) $||f||_{L_p}$ L_p -norm of the function f (in the sense of Lebesgue) ℓ_p -norm of the sequence a $||a||_{\ell_p}$ Scalar (or duality) product $\langle \varphi, s \rangle$ L_2 inner product $\langle f, g \rangle_{L_2}$ Reversed signal: $f^{\vee}(\mathbf{r}) = f(-\mathbf{r})$ $(f * g)(\mathbf{r})$ Continuous-domain convolution $(a*b)[\mathbf{n}]$ Discrete-domain convolution Fourier transform of φ : $\int_{\mathbb{R}^d} \varphi(r) \mathrm{e}^{-\mathrm{j} \langle \omega, r \rangle} \, \mathrm{d} r$ $\hat{\varphi}(\boldsymbol{\omega})$ $\hat{f} = \mathcal{F}\{f\}$ Fourier transform of f (classical or generalized) Inverse Fourier transform of \hat{f} $\overline{\mathscr{F}}{\{f\}}(\boldsymbol{\omega}) = \mathscr{F}{\{f\}}(-\boldsymbol{\omega})$ Conjugate Fourier transform of f

Signals, functions, and kernels

 $\begin{array}{ll} f,f(\cdot), \text{ or } f(r) & \text{Continuous-domain signal: function } \mathbb{R}^d \to \mathbb{R} \\ \varphi & \text{Generic test function in } \mathcal{S}(\mathbb{R}^d) \\ \psi_L = L^* \phi & \text{Operator-like wavelet with smoothing kernel } \phi \\ s, \langle \varphi, s \rangle & \text{Generalized function } \mathcal{S}(\mathbb{R}^d) \to \mathbb{R} \\ \mu_h & \text{Measure associated with } h: \langle \varphi, h \rangle = \int_{\mathbb{R}^d} \varphi(r) \mu_h(\mathrm{d}r) \\ \delta & \text{Dirac impulse: } \langle \varphi, \delta \rangle = \varphi(\mathbf{0}) \\ \delta(\cdot - r_0) & \text{Shifted Dirac impulse} \end{array}$

From linear algebra to functional analysis

Infinite-dim counterpart

$$\mathbf{x} = (x_1, \cdots, x_N)$$

$$f(\boldsymbol{x})$$

$$\langle \mathbf{x}, \mathbf{y} \rangle$$

$$\langle f, arphi
angle = \int_{\mathbb{R}^d} f(oldsymbol{x}) arphi(oldsymbol{x}) \mathrm{d}oldsymbol{x}$$

 e_n (canonical basis)

Dirac distribution: $\delta \in \mathcal{S}'(\mathbb{R}^d)$

$$y = Ax$$

$$A\{f\}(\boldsymbol{x}) = \int_{\mathbb{R}^d} a(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d\boldsymbol{y}$$

Transpose of a matrix: \mathbf{L}^T

Adjoint operator: L^*

5

Normed spaces

Normed space: vector space \mathcal{X} equipped with a norm $\|\cdot\|_{\mathcal{X}}$

Convergent sequence of functions (φ_i) in \mathcal{X} :

$$\lim_{i} \varphi_i = \varphi \quad \Leftrightarrow \quad \lim_{i} \|\varphi - \varphi_i\|_{\mathcal{X}} = 0$$

Definition

A Banach space is a **complete normed** space \mathcal{X} ; that is, such that $\lim_i \varphi_i = \varphi \in \mathcal{X}$ for any convergent sequence (φ_i) in \mathcal{X} .

■ Lebesgue space $L_p(\mathbb{R}^d)$, $1 \leq p \leq \infty$

$$\|\varphi\|_{L_p} = \begin{cases} \left(\int_{\mathbb{R}^d} |\varphi(\boldsymbol{x})|^p \, d\boldsymbol{x} \right)^{\frac{1}{p}} & \text{for } 1 \leq p < \infty \\ \operatorname{ess\,sup}_{\boldsymbol{x} \in \mathbb{R}^d} |\varphi(\boldsymbol{x})| & \text{for } p = \infty \end{cases}$$

Space of continuous and bounded functions

$$C_{\mathrm{b}}(\mathbb{R}^d) = \left\{ f: \mathbb{R}^d \to \mathbb{R} \text{ continuous and s.t. } \|f\|_{L_\infty} < +\infty \right\} \quad \subseteq L_\infty(\mathbb{R}^d)$$

Hilbert spaces

Definition A real-valued inner product on a vector space $\mathcal H$ is a bilinear form $\mathcal H \times \mathcal H \to \mathbb R$: $(f,g) \mapsto \langle f,g \rangle_{\mathcal H}$ that satisfies the following properties for all $f,g,h \in \mathcal H$ and $\alpha \in \mathbb R$.

- Linearity: $\langle \alpha f, g \rangle_{\mathcal{H}} = \alpha \langle f, g \rangle_{\mathcal{H}}$ and $\langle f + g, h \rangle_{\mathcal{H}} = \langle f, h \rangle_{\mathcal{H}} + \langle g, h \rangle_{\mathcal{H}}$.
- Symmetry: $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$.
- Non-negativity: $\langle f, f \rangle_{\mathcal{H}} \geq 0$.
- Unicity: $\langle f, f \rangle_{\mathcal{H}} = 0 \Leftrightarrow f = 0$.

If all conditions except the last are met, then $\langle f,g\rangle_{\mathcal{H}}$ is called a semi-inner product.

Definition

A Hilbert space is a **complete normed** space \mathcal{H} equipped with a norm induced by an inner product: $||f||_{\mathcal{H}} = \langle f, f \rangle_{\mathcal{H}}$.

Example:
$$\langle f,g
angle_{L_2}=\int_{\mathbb{R}^d}f(m{x})g(m{x})\mathrm{d}m{x}$$

7

Schwartz's space of test functions

Nuclear-Fréchet space (i.e., equipped with a family of semi-norms) rather than a Banach space

 $lacksquare{\mathbb{Z}}(\mathbb{R}^d)$: Schwartz' space of smooth and rapidly-decreasing functions

Family of semi-norms: $\|\varphi\|_{{\boldsymbol m},{\boldsymbol n}}=\sup_{{\boldsymbol x}\in\mathbb{R}^d}|{\boldsymbol x}^{{\boldsymbol m}}\partial^{{\boldsymbol n}}\varphi({\boldsymbol x})|\quad \text{ for all } {\boldsymbol m},{\boldsymbol n}\in\mathbb{N}^d.$

$$\lim_{i} \varphi_{i} = \varphi \quad \Leftrightarrow \quad \lim_{i} \|\varphi_{i} - \varphi\|_{\boldsymbol{m},\boldsymbol{n}} = 0$$

$$\mathcal{S}(\mathbb{R}^d) = \left\{\varphi: \mathbb{R}^d \to \mathbb{R} \; \text{ s.t. } \|f\|_{\boldsymbol{m},\boldsymbol{n}} < +\infty, \; \text{for all } \boldsymbol{m},\boldsymbol{n} \in \mathbb{N}^d \right\}$$

Very constrained (and safe) framework

$$\mathcal{S}(\mathbb{R}^d) \subseteq L_p(\mathbb{R}^d) \quad ext{for any } p \geq 1$$

Linear operators: continuity property

Definition

An operator $A: \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} and \mathcal{Y} are vector spaces is *linear* if, for any $\varphi_1, \varphi_2 \in \mathcal{X}$ and $a_1, a_2 \in \mathbb{R}$ (or \mathbb{C}),

$$A\{a_1\varphi_1 + a_2\varphi_2\} = a_1A\{\varphi_1\} + a_2A\{\varphi_2\}$$

Definition

Let \mathcal{X}, \mathcal{Y} be topological spaces. An operator $A: \mathcal{X} \to \mathcal{Y}$ is (sequentially) *continuous* (with respect to the topologies of \mathcal{X} and \mathcal{Y}) if, for any convergent sequence (φ_i) in \mathcal{X} with limit $\varphi \in \mathcal{X}$, the sequence $(A\varphi_i)$ converges to $A\varphi$ in \mathcal{Y} , that is,

$$\lim_{i} A\{\varphi_i\} = A\{\lim_{i} \varphi_i\}.$$

Example: The linear operator D^{m_0} is continuous $\mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$.

Schwartz' semi-norms: $\|\varphi\|_{m,n}=\sup_{x\in\mathbb{R}}|x^m\mathrm{D}^n\varphi(x)|$ with $m,n\in\mathbb{N}$

$$\|\mathbf{D}^{m_0}\varphi_i - \mathbf{D}^{m_0}\varphi\|_{m,n} = \|\mathbf{D}^{m_0}\{\varphi_i - \varphi\}\|_{m,n} = \|\varphi_i - \varphi\|_{m,n+m_0} \to 0$$

9

Examples of continuous operators on $\mathcal{S}(\mathbb{R}^d)$

$$\forall \varphi \in \mathcal{S}(\mathbb{R}^d)$$

lacksquare Multiplication by a polymonial: $\mathcal{S}(\mathbb{R}^d) o \mathcal{S}(\mathbb{R}^d)$

$$\boldsymbol{r}^{\boldsymbol{n}}\varphi(\boldsymbol{r}) = r_1^{n_1}\cdots r_d^{n_d}\varphi(\boldsymbol{r}) \in \mathcal{S}(\mathbb{R}^d)$$

lacksquare Differentiation: $\mathcal{S}(\mathbb{R}^d) o \mathcal{S}(\mathbb{R}^d)$

$$\partial^{\boldsymbol{n}}\varphi(\boldsymbol{r})=\partial^{n_1}_{r_1}\cdots\partial^{n_d}_{r_d}\varphi(\boldsymbol{r})\in\mathcal{S}(\mathbb{R}^d)$$

lacksquare Fourier transform: $\mathcal{S}(\mathbb{R}^d) o \mathcal{S}(\mathbb{R}^d)$

$$\mathcal{F}\{arphi\}(oldsymbol{\omega}) = \int_{\mathbb{R}^d} \mathrm{e}^{-\mathrm{j}\langle oldsymbol{r},oldsymbol{\omega}
angle} arphi(oldsymbol{r}) \; \mathrm{d}oldsymbol{r} \in \mathcal{S}(\mathbb{R}^d)$$

$$\mathcal{F}^{-1}\{\hat{\varphi}\}(\boldsymbol{r}) = \int_{\mathbb{R}^d} e^{j\langle \boldsymbol{r}, \boldsymbol{\omega} \rangle} \hat{\varphi}(\boldsymbol{\omega}) \; \frac{d\boldsymbol{\omega}}{(2\pi)^d} = \varphi(\boldsymbol{r})$$

Bounded operator

Proposition

Consider the linear operator $A: \mathcal{X} \to \mathcal{Y}$ where $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ and $(\mathcal{Y}, \|\cdot\|_{\mathcal{Y}})$ are two Banach spaces. Then, A is continuous $\mathcal{X} \to \mathcal{Y}$ iff. it is bounded; i.e., iff. there exists a constant C_0 such that, for any $f \in \mathcal{X}$

$$\|\mathbf{A}\{f\}\|_{\mathcal{Y}} \le C_0 \|f\|_{\mathcal{X}}$$

Examples

- ullet Boundedness of (classical) Fourier transform $\mathcal{F}:L_1(\mathbb{R}^d) o C_{\mathrm{b}}(\mathbb{R}^d)$
- Convolution operator: $T_h\{f\}=h*f$ $T_h \text{ is bounded } L_2(\mathbb{R}^d) \to L_2(\mathbb{R}^d) \quad \Leftrightarrow \quad \hat{h} \in L_\infty(\mathbb{R}^d)$

$$\|h * f\|_{L_2}^2 = \int_{\mathbb{R}^d} |\hat{h}(\boldsymbol{\omega}) \hat{f}(\boldsymbol{\omega})|^2 \frac{\mathrm{d}\boldsymbol{\omega}}{(2\pi)^d} \le \|\hat{h}\|_{L_\infty}^2 \int_{\mathbb{R}^d} |\hat{f}(\boldsymbol{\omega})|^2 \frac{\mathrm{d}\boldsymbol{\omega}}{(2\pi)^d} = \|\hat{h}\|_{L_\infty}^2 \|f\|_{L_2}^2$$

Spaces

\mathscr{X},\mathscr{Y}	Generic vector spaces (normed or nuclear)
$L_2(\mathbb{R}^d)$	Finite-energy functions $\int_{\mathbb{R}^d} f(\mathbf{r}) ^2 d\mathbf{r} < \infty$
$L_p(\mathbb{R}^d)$	Functions such that $\int_{\mathbb{R}^d} f(\mathbf{r}) ^p d\mathbf{r} < \infty$
$L_{p,\alpha}(\mathbb{R}^d)$	Functions such that $\int_{\mathbb{R}^d} f(\mathbf{r})(1+ \mathbf{r})^{\alpha} ^p d\mathbf{r} < \infty$
$\mathscr{D}(\mathbb{R}^d)$	Smooth and compactly supported test functions
$\mathscr{D}'(\mathbb{R}^d)$	Distributions or generalized functions over \mathbb{R}^d
$\mathscr{S}(\mathbb{R}^d)$	Smooth and rapidly decreasing test functions
$\mathscr{S}'(\mathbb{R}^d)$	Tempered distributions (generalized functions)
$\mathscr{R}(\mathbb{R}^d)$	Bounded functions with rapid decay
$\ell_2(\mathbb{Z}^d)$	Finite-energy sequences $\sum_{k \in \mathbb{Z}^d} a[k] ^2 < \infty$
$\ell_p(\mathbb{Z}^d)$	Sequences such that $\sum_{k \in \mathbb{Z}^d} a[k] ^p < \infty$

Operators

ıu	identity
$D = \frac{d}{dt}$	Derivative
D_d	Finite difference (discrete derivative)
\mathbf{D}^N	Nth-order derivative
∂^n	Partial derivative of order $\mathbf{n} = (n_1, \dots, n_d)$
L	Whitening operator (LSI)
$\widehat{L}(\boldsymbol{\omega})$	Frequency response of L (Fourier multiplier

Idontity

11

3.2 DUAL SPACES AND ADJOINT

Intuition: finite dimensional case $\forall \mathbf{x}, \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n \text{ and } \forall a_1, a_2 \in \mathbb{R}$

 $f(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ is a linear functional on \mathbb{R}^n

$$\Leftrightarrow f(a_1\mathbf{x}_1 + a_2\mathbf{x}_2) = a_1f(\mathbf{x}_1) + a_2f(\mathbf{x}_2)$$

$$\Leftrightarrow f(\mathbf{x}) = \mathbf{f}^T \mathbf{x} = \langle \mathbf{f}, \mathbf{x} \rangle$$
 for some $\mathbf{f} \in \mathbb{R}^n$

The set of all linear functionals on \mathbb{R}^n is a vector space $(\mathbb{R}^n)^*$ isomorphic to \mathbb{R}^n

$$\mathbf{x} \mapsto \langle a_1 \mathbf{f}_1 + a_2 \mathbf{f}_2, \mathbf{x} \rangle = a_1 \langle \mathbf{f}_1, \mathbf{x} \rangle + a_2 \langle \mathbf{f}_2, \mathbf{x} \rangle$$

Linear operator $\mathbf{y} \mapsto \mathbf{A}\mathbf{y} \colon \mathbb{R}^m \to \mathbb{R}^n$

A: $n \times m$ matrix

$$\langle \mathbf{f}, \mathbf{A} \mathbf{y} \rangle = \langle \mathbf{A}^* \mathbf{f}, \mathbf{y} \rangle$$

 $\mathbf{A}^* = \mathbf{A}^T$ is the adjoint of \mathbf{A}

$$\mathbf{f}\mapsto \mathbf{A}^*\mathbf{f}\colon \mathbb{R}^n \to \mathbb{R}^m$$

13

Algebraic vs. continuous duals

General vector space $\boldsymbol{\mathcal{X}}$ (normed or nuclear)

Functional on \mathcal{X} : a map $\varphi \mapsto f(\varphi)$ that takes \mathcal{X} to the scalar field \mathbb{R}

Notation for linear functionals: $f(\varphi) = \langle f, \varphi \rangle$ $\forall \varphi \in \mathcal{X}$

The set of all linear functionals on $\mathcal X$ is a vector space $\mathcal X^*$ (algebraic dual of $\mathcal X$)

$$\langle a_1 f_1 + a_2 f_2, \varphi \rangle = a_1 \langle f_1, \varphi \rangle + a_2 \langle f_2, \varphi \rangle, \quad \forall a_1, a_2 \in \mathbb{R}$$

The set of all *continuous* linear functionals on $\mathcal X$ is a vector space $\mathcal X'\subseteq\mathcal X^*$

 \mathcal{X}' : topological or *continuous dual* of \mathcal{X}

Scalar (or duality) product $\langle \cdot, \cdot \rangle$ is a continuous bilinear functional: $\mathcal{X}' \times \mathcal{X} \to \mathbb{R}$

■ Weak-* topology on \mathcal{X}' : (f_i) converges to f in \mathcal{X}'

$$\Leftrightarrow \lim_{i} \langle f_i, \varphi \rangle = \langle f, \varphi \rangle \text{ for all } \varphi \in \mathcal{X}$$

Dual of a Banach space

The dual of a Banach space $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$ is another Banach space \mathcal{X}' equipped with the dual norm

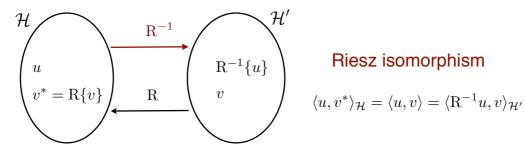
$$||v||_{\mathcal{X}'} = \sup_{u \in \mathcal{X} \setminus \{0\}} \left(\frac{\langle v, u \rangle}{||u||_{\mathcal{X}}} \right)$$

Duals of L_p spaces $\left(L_p(\mathbb{R}^d)\right)' = L_{p'}(\mathbb{R}^d)$ with $\frac{1}{p} + \frac{1}{p'} = 1$ for $p \in (1, \infty)$

$$\begin{split} \text{H\"older inequality:} \quad |\langle f, \varphi \rangle| & \leq \int_{\mathbb{R}^d} |f(\boldsymbol{r}) \varphi(\boldsymbol{r})| \; \mathrm{d}\boldsymbol{r} \leq \|f\|_{L_p} \|\varphi\|_{L_{p'}} \\ \\ \Rightarrow \quad \|f\|_{L_{p'}} & = \sup_{\varphi \in L_p(\mathbb{R}^d) \backslash \{0\}} \left(\frac{\langle f, \varphi \rangle}{\|\varphi\|_{L_p}}\right) \end{split}$$

15

Dual of a Hilbert space



$$\langle u, v^* \rangle_{\mathcal{H}} = \langle u, v \rangle = \langle \mathbf{R}^{-1} u, v \rangle_{\mathcal{H}'}$$

The dual of a Hilbert space \mathcal{H} is a Hilbert space \mathcal{H}' with $\mathcal{H}' = R^{-1}(\mathcal{H})$.

Riesz' representation theorem

Let $(\mathcal{H}, \mathcal{H}')$ be a dual pair of Hilbert spaces. Then, for any $v \in \mathcal{H}'$, there is a unique element $v^* = R\{v\} \in \mathcal{H}$ (the so-called **conjugate** of v) such that

$$v(u) = \langle v^*, u \rangle_{\mathcal{H}}$$
 for all $u \in \mathcal{H}$.

Conversely, for any $v^* \in \mathcal{H}$, the linear functional $v: u \mapsto \langle v^*, u \rangle_{\mathcal{H}}$ is continuous with $||v|| = ||v||_{\mathcal{H}'} = ||v^*||_{\mathcal{H}} = ||R\{v\}||_{\mathcal{H}}$, and hence included in \mathcal{H}' .

The linear isometric map $R: \mathcal{H}' \to \mathcal{H}$ that associates any element $v \in \mathcal{H}'$ to its conjugate $v^* \in \mathcal{H}$ is called the **Riesz map**.

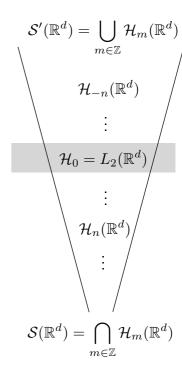
Dual of Schwartz' space of test functions

 $\mathcal{S}'(\mathbb{R}^d)$: Schwartz's space of *tempered distributions* over \mathbb{R}^d

Generalized functions =

continuous linear functionals on $\mathcal{S}(\mathbb{R}^d)$

- Rigged Hilbert spaces: $\mathcal{H}_n(\mathbb{R}^d)$
 - matched order n of decay & smoothness: $f \in \mathcal{H}_n(\mathbb{R}^d) \quad \Leftrightarrow \quad (\cdot)^{\boldsymbol{m}} \partial^{\boldsymbol{n}} f \in L_2(\mathbb{R}^d), \; |\boldsymbol{m}|, |\boldsymbol{n}| \leq n$
 - $\mathcal{H}_{n_1}(\mathbb{R}^d) \subseteq \mathcal{H}_{n_2}(\mathbb{R}^d)$ for $n_1 \geq n_2$
 - $(\mathcal{H}_n(\mathbb{R}^d))' = \mathcal{H}_{-n}(\mathbb{R}^d)$
 - Nuclear structure: $\mathcal{H}_{n+1} = T(\mathcal{H}_n)$ where T is a **nuclear** operator



17

Adjoint operator

Pair of vector spaces $(\mathcal{X},\mathcal{Y})$ with topological duals $(\mathcal{X}',\mathcal{Y}')$

■ Linear operator $\varphi \mapsto A\varphi \colon \mathcal{X} \to \mathcal{Y}$

$$\langle f, A\varphi \rangle = \langle A^*f, \varphi \rangle$$
 $\mathcal{Y}' \times \mathcal{Y}$
 $\mathcal{X}' \times \mathcal{X}$

 $\mathrm{A}^*: \mathcal{Y}' o \mathcal{X}'$ is the adjoint of A

Example: $\mathrm{D}:\mathcal{S}(\mathbb{R})\to\mathcal{S}(\mathbb{R})$

$$D^* = -D$$

Integration by part

$$\langle \mathrm{D}\varphi, \phi \rangle = \int_{\mathbb{R}} \varphi'(x)\phi(x)\mathrm{d}x = \underbrace{\varphi(x)\phi(x)|_{-\infty}^{+\infty}}_{=0} - \int_{\mathbb{R}} \varphi(x)\phi'(x)\mathrm{d}x$$

Generalization: $(\partial^n)^* = (-1)^{|n|} \partial^n$ with $|n| = n_1 + \cdots + n_d$

Hermitian inner product vs. duality product

 L_2 (or hermitian) inner product: $\langle f,g
angle_{L_2}=\int_{\mathbb{R}^d}f(m{x})\overline{g(m{x})}\mathrm{d}m{x}$ $f,g\in L_2(\mathbb{R}^d)$

Hermitian transpose: $A^H = \overline{A^*}$ $\langle Af, g \rangle_{L_2} = \langle f, A^H g \rangle_{L_2} = \langle f, \overline{A^*g} \rangle$

Classical Fourier transform

$$\hat{f}(\boldsymbol{\omega}) = \mathcal{F}\{f\}(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} f(\boldsymbol{r}) e^{-j\langle \boldsymbol{r}, \boldsymbol{\omega} \rangle} d\boldsymbol{r}, \quad f \in L_1(\mathbb{R}^d)$$

Plancherel's extension $\mathcal{F}: L_2(\mathbb{R}^d) \to L_2(\mathbb{R}^d)$

Parseval relation: $\langle f,g \rangle_{L_2} = \frac{1}{(2\pi)^d} \langle \hat{f},\hat{g} \rangle_{L_2}$

Duality product version: $\langle f, \hat{g} \rangle = \langle \hat{f}, g \rangle$

19

locally convex vector spaces $\mathcal{S}'(\mathbb{R}^d)$

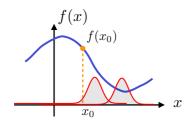
Fréchet spaces (countably-normed)

Banach spaces (e.g., $L_p(\mathbb{R}^d)$ with $p \geq 1$)

Hilbert spaces $L_2(\mathbb{R}^d)$

Nuclear F-spaces $S(\mathbb{R}^d)$

3.3 GENERALIZED FUNCTIONS



Physical measurement: $\langle \boldsymbol{\varphi}, f \rangle = \int_{\mathbb{R}} \boldsymbol{\varphi}(\boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$

Walifle Walifle

Family of linear sensors $\langle \varphi_i, f \rangle$:

$$\langle a_1 \varphi_1 + a_2 \varphi_2, f \rangle = a_1 \langle \varphi_1, f \rangle + a_2 \langle \varphi_2, f \rangle$$

Continuity of the measurements with respect to variations in φ_i :

$$\lim_{i} \varphi_{i} = \varphi \quad \Rightarrow \quad \lim_{i} \langle \varphi_{i}, f \rangle = \langle \varphi, f \rangle$$

Notion of weak equality

$$f = g \quad \Leftrightarrow \quad \langle \varphi, f \rangle = \langle \varphi, g \rangle \quad \text{ for all } \quad \varphi \in \mathcal{S}(\mathbb{R}^d)$$

"If it looks like a duck, swims like a duck, and quacks like a duck, then it is (weakly) a duck"

21

What is a generalized function?

A *continuous linear functional* on $\mathcal{S}(\mathbb{R}^d)$ (resp. $\mathcal{D}(\mathbb{R}^d)$)

 $f \in \mathcal{S}'(\mathbb{R}^d)$: Schwartz' space of tempered distributions

A rule $\mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$ that associates a real number $\langle f, \varphi \rangle$ to every test function φ

Examples:
$$\varphi \mapsto \langle \delta(\cdot - \boldsymbol{r}_0), \varphi \rangle = \varphi(\boldsymbol{r}_0)$$

An extension of the classical notion of function.

If $g({m x})$ is (slowly increasing and) locally integrable, then $\langle g, \varphi \rangle = \int_{\mathbb{R}^d} g({m r}) \varphi({m r}) \mathrm{d}{m r}$

Otherwise the "integral" notation $\langle f, \varphi \rangle = \int_{\mathbb{R}^d} f({m r}) \varphi({m r}) \mathrm{d}{m r}$ is only meant symbolically

Operations on generalized functions

Dual extension principle

Given operators $U, U^* : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ that form an adjoint pair on $\mathcal{S}(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d)$. Their action to $\mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ is extended by defining Uf and U^*f such that

$$\langle \varphi, \mathbf{U} f \rangle = \langle \mathbf{U}^* \varphi, f \rangle,$$

$$\langle \varphi, \mathbf{U}^* f \rangle = \langle \mathbf{U} \varphi, f \rangle.$$

Examples

- lacksquare Shift by $m{r}_0 \in \mathbb{R}^d$: $\langle arphi, f(\cdot m{r}_0)
 angle = \langle arphi(\cdot + m{r}_0), f
 angle$
- $m{n}$ th-order derivative: $\langle \varphi, \partial^{n} f \rangle = (-1)^{|n|} \langle \partial^{n} \varphi, f \rangle$
- $\qquad \textbf{Convolution:} \quad \langle \varphi, h * f \rangle = \langle h^\vee * \varphi, f \rangle$
- $\qquad \text{Fourier transform:} \quad \langle \varphi, \mathcal{F}\{f\} \rangle = \langle \mathcal{F}^*\{\varphi\}, f \rangle = \langle \hat{\varphi}, f \rangle$

23

Generalized Fourier transform

Definition

 $\hat{f} = \mathcal{F}\{f\}$ is the *generalized Fourier transform* of $f \in \mathcal{S}'(\mathbb{R}^d)$ iff.

$$\langle \varphi, \hat{f} \rangle = \langle \hat{\varphi}, f \rangle \quad ext{ for all } \varphi \in \mathcal{S}(\mathbb{R}^d),$$

 $\text{ where } \hat{\varphi}(\boldsymbol{\omega}) = \mathcal{F}\{\varphi\}(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \varphi(\boldsymbol{r}) \mathrm{e}^{-\mathrm{j}\langle \boldsymbol{r}, \boldsymbol{\omega} \rangle} \; \mathrm{d}\boldsymbol{r}.$

■ Fundamental property

The generalized Fourier transform is a reversible mapping $\mathcal{S}'(\mathbb{R}^d) o \mathcal{S}'(\mathbb{R}^d)$

$$\bullet f \in \mathcal{S}'(\mathbb{R}^d) \quad \Leftrightarrow \quad \mathcal{F}\{f\} \in \mathcal{S}'(\mathbb{R}^d)$$

$$\quad \blacksquare \ \mathcal{F}^{-1}\mathcal{F} = \mathcal{F}\mathcal{F}^{-1} = \mathrm{Id}$$

Examples of generalized Fourier transforms

$$\mathbb{F}\{\delta\} = 1$$

$$\mathbf{F}\{\mathrm{e}^{\mathrm{j}\langle\boldsymbol{\omega}_0,\boldsymbol{r}\rangle}\}(\boldsymbol{\omega})=(2\pi)^d\delta(\boldsymbol{\omega}-\boldsymbol{\omega}_0)$$

$$lacksquare \mathcal{F}\{|m{r}|^{\gamma}\}(m{\omega}) = C_{\gamma} rac{1}{|m{\omega}|^{\gamma+d}}$$

Temporal or spatial domain	Fourier domain
$\widehat{f}(\mathbf{r}) = \mathscr{F}{f}(\mathbf{r})$	$(2\pi)^d f(-\boldsymbol{\omega})$
$f^{\vee}(\mathbf{r}) = f(-\mathbf{r})$	$\hat{f}(-\boldsymbol{\omega}) = \hat{f}^{\vee}(\boldsymbol{\omega})$
$\overline{f(\pmb{r})}$	$\overline{\hat{f}(-oldsymbol{\omega})}$
$f(\mathbf{A}^{\mathrm{T}}\mathbf{r})$	$\frac{1}{ \det \mathbf{A} }\widehat{f}(\mathbf{A}^{-1}\boldsymbol{\omega})$
$f(\mathbf{r} - \mathbf{r}_0)$	$e^{-j\langle r_0, \boldsymbol{\omega} \rangle} \widehat{f}(\boldsymbol{\omega})$
$\mathrm{e}^{\mathrm{j}\langle m{r},m{\omega}_0 angle}f(m{r})$	$\widehat{f}(\boldsymbol{\omega} - \boldsymbol{\omega}_0)$
$\partial^{\boldsymbol{n}} f(\boldsymbol{r})$	$(\mathrm{j}\boldsymbol{\omega})^{\boldsymbol{n}}\widehat{f}(\boldsymbol{\omega})$
$r^n f(r)$	$j^{ m{n} }\partial^{m{n}}\widehat{f}(m{\omega})$
(g*f)(r)	$\widehat{g}(\boldsymbol{\omega})\widehat{f}(\boldsymbol{\omega})$
$g(\mathbf{r})f(\mathbf{r})$	$(2\pi)^{-d}(\widehat{g}*\widehat{f})(\boldsymbol{\omega})$

Table 3.3 Basic properties of the (generalized) Fourier transform.

Table A.1 Table of canonical regularizations of some singular functions, and their Fourier transforms. The one-sided power function is $r_+^{\lambda} = \frac{1}{2} \left(|r|^{\lambda} + \mathrm{sign}(r) |r|^{\lambda} \right)$ and Γ denotes the gamma function. Derivatives of δ are also included for completeness.

Singular function	Canonical regularization	Fourier transform
$r_+^{\lambda}, \\ -n-1 < \operatorname{Re}(\lambda) < -n$	$\begin{split} \langle \varphi, \tilde{r}_{+}^{\lambda} \rangle \\ &= \int_{0}^{\infty} r^{\lambda} \Big(\varphi(r) - \sum_{0 \le i \le n-1} \frac{r^{i} \varphi^{(i)}(0)}{i!} \Big) \mathrm{d}r \end{split}$	$\frac{\Gamma(\lambda+1)}{(j\omega)^{\lambda+1}}$
r_{+}^{-n} , $n = 1, 2, 3, \dots$	$\begin{split} &\langle \varphi, \tilde{r}_{+}^{-n} \rangle \\ &= \int_{0}^{\infty} r^{-n} \Big(\varphi(r) - \Big(\sum_{0 \leq i \leq n-2} \frac{r^{i} \varphi^{(i)}(0)}{i!} \Big) \\ &- \frac{r^{n-1} \varphi^{(n-1)}(0)}{i!} u(1-r) \Big) \mathrm{d}r \\ &\text{(non-canonical)} \end{split}$	computable but not needed
$r_+^n,$ $n = 0, 1, 2, \dots$	N/A	$j^n\pi\delta^{(n)}(\omega)+\frac{n!}{(j\omega)^{n+1}}$
$ r ^{\lambda}$, $-2m-2 < \operatorname{Re}(\lambda) < -2m$	$\begin{aligned} \langle \varphi, \tilde{r} \lambda \rangle \\ &= \int_0^\infty r^{\lambda} \Big(\varphi(r) + \varphi(-r) - \\ &2 \sum_{0 \le i \le m-1} \frac{r^{2i} \varphi^{(2i)}(0)}{(2i)!} \Big) \mathrm{d}r \end{aligned}$	$-2\sin(\frac{\pi}{2}\lambda)\frac{\Gamma(\lambda+1)}{ \omega ^{\lambda+1}}$
$ r ^{\lambda} \operatorname{sign}(r),$ $-2m-1 < \operatorname{Re}(\lambda) <$ -2m+1	$\begin{aligned} &\langle \varphi, \tilde{r} ^{\lambda} \operatorname{sign}(r) \rangle \\ &= \int_{0}^{\infty} r^{\lambda} \left(\varphi(r) - \varphi(-r) - 2 \sum_{0 \le i \le m-1} \frac{r^{2i+1} \varphi^{(2i+1)}(0)}{(2i+1)!} \right) \mathrm{d}r \end{aligned}$	$-2j\cos(\frac{\pi}{2}\lambda)\frac{\Gamma(\lambda+1)}{ \omega ^{\lambda+1}}\mathrm{sign}(\omega)$
r^n , $n = 0, 1, 2, \dots$	N/A	$j^n 2\pi \delta^{(n)}(\omega)$
$r^n \operatorname{sign}(r)$, $n = 1, 2, \dots$	N/A	$2\frac{n!}{(\mathrm{j}\omega)^{n+1}}$
1/r,	$\int_0^{+\infty} \frac{\varphi(r) - \varphi(-x)}{r} \mathrm{d}r$	$-\mathrm{j}\pi\mathrm{sign}(\omega)$

The kernel theorem

Schwartz' kernel theorem: first form

Every continuous linear operator $A: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ can be written in the form

$$arphi(m{r})\mapsto \mathrm{A}\{arphi\}(m{r})=\int_{\mathbb{R}^d}a(m{r},m{s})arphi(m{s})\mathrm{d}m{s}$$

where $a(\cdot, \cdot)$ is a generalized function in $\mathcal{S}'(\mathbb{R}^d \times \mathbb{R}^d)$.

Generalized impulse response: $a(\cdot, s_0) = A\{\delta(\cdot - s_0)\}$

Schwartz' kernel theorem: second form

Every continuous bilinear form $B:\mathcal{S}(\mathbb{R}^d) imes\mathcal{S}(\mathbb{R}^d) o\mathbb{R}$ (or \mathbb{C}) can be written as

$$B(\varphi_1, \varphi_2) = \int_{\mathbb{R}^d \times \mathbb{R}^d} a(\boldsymbol{r}, \boldsymbol{s}) \varphi_1(\boldsymbol{r}) \varphi_2(\boldsymbol{s}) d\boldsymbol{s} d\boldsymbol{r} = \langle \varphi_1, A\{\varphi_2\} \rangle$$
$$= \langle a, \varphi_1 \otimes \varphi_2 \rangle$$

where $a(\cdot, \cdot)$ is a generalized function in $\mathcal{S}'(\mathbb{R}^d \times \mathbb{R}^d)$.

$$(\varphi_1 \otimes \varphi_2)(\boldsymbol{r}, \boldsymbol{s}) = \varphi_1(\boldsymbol{r})\varphi_2(\boldsymbol{s}) \text{ for all } \varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$$

27

LSI operators and convolution

LSI: Linear Shift-Invariant

Shift-invariant operator:

$$\mathrm{U}\{f(\cdot-oldsymbol{r}_0)\}(oldsymbol{r})=\mathrm{U}\{f\}(oldsymbol{r}-oldsymbol{r}_0) ext{ for } oldsymbol{r}_0\in\mathbb{R}^d$$

A continuous linear shift-invariant operator $\mathcal{S}(\mathbb{R}^d) o \mathcal{S}'(\mathbb{R}^d)$ can be written as a convolution

$$\varphi(\boldsymbol{r}) \mapsto (\varphi * h)(\boldsymbol{r}) = \int_{\mathbb{R}^d} \varphi(\boldsymbol{s}) h(\boldsymbol{r} - \boldsymbol{s}) \mathrm{d}\boldsymbol{s}$$

with some generalized function $h \in \mathcal{S}'(\mathbb{R}^d)$.

Kernel theorem with $a({m r},{m s})=h({m r}-{m s})$ (LSI property)

Fourier-domain multiplication: $\mathcal{F}\{h*\varphi\}=\hat{\varphi}\hat{h}$

lacksquare Special case: continuous operator $\mathcal{S}(\mathbb{R}^d) o \mathcal{S}(\mathbb{R}^d)$

Smooth (and slowly increasing) Fourier multiplier: $\mathcal{F}\{h\}(\omega)=\hat{h}(\omega)$

Example (rational transfer function):
$$\hat{h}(\omega) = C_0 \frac{\prod_{m=1}^{M} (\mathrm{j}\omega - z_m)}{\prod_{n=1}^{N} (\mathrm{j}\omega - p_n)}$$

Convolution operators on $L_p(\mathbb{R}^d)$

Young inequality for convolution

$$||h*f||_{L_p} \le ||h||_{L_1} ||f||_{L_p} \text{ for } p \ge 1$$

 $h \in L_1(\mathbb{R}^d)$ classical condition for BIBO stability

Definition

An operator $T: L_p(\mathbb{R}^d) \to L_p(\mathbb{R}^d)$ is called a L_p **Fourier multiplier** if it is continuous on $L_p(\mathbb{R}^d)$ and can be represented as $Tf = \mathcal{F}^{-1}\{\hat{f}H\}$. The function $H: \mathbb{R}^d \to \mathbb{C}$ is the frequency response of the underlying filter.

Definition

The *norm* of the linear operator $T: L_p(\mathbb{R}^d) \to L_p(\mathbb{R}^d)$ is given by

$$\|\mathbf{T}\|_{L_p} = \sup_{f \in L_p(\mathbb{R}^d) \setminus \{0\}} \frac{\|\mathbf{T}f\|_{L_p}}{\|f\|_{L_p}}.$$

The operator is said to be bounded if its norm is finite.

29

Characterization of Fourier multipliers

Theorem

Let T be a Fourier-multiplier operator with frequency response $H: \mathbb{R}^d \to \mathbb{C}$ and (generalized) impulse response $h = \mathcal{F}^{-1}\{H\} = \mathrm{T}\{\delta\}$. Then

- 1) The operator T is an L_1 Fourier multiplier if and only if there exists of a finite complex-valued Borel measure denoted by μ_h such that $H(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \mathrm{e}^{-\mathrm{j}\langle \boldsymbol{\omega}, \boldsymbol{x} \rangle} \mu_h(\mathrm{d}\boldsymbol{x})$.
- 2) The operator T is an L_{∞} Fourier multiplier if and only if H is the Fourier transform of a finite complex-valued Borel measure, as stated in 1).
- 3) The operator T is an L_2 Fourier multiplier if and only if $H = \hat{h} \in L_{\infty}(\mathbb{R}^d)$.

The corresponding operator norms are

$$\|T\|_{L_1} = \|T\|_{L_{\infty}} = \|\mu_h\|_{TV} = \sup_{\|\varphi\|_{L_{\infty}} \le 1} \langle \varphi, h \rangle$$
$$\|T\|_{L_2} = \frac{1}{(2\pi)^{d/2}} \|H\|_{L_{\infty}},$$

where $\|\mu_h\|_{\mathrm{TV}}$ is the total variation of the underlying measure. Finally, T is an L_p Fourier multiplier for the whole range $1 \leq p \leq +\infty$ if the condition on H in 1) or 2) is met with $\|\mathrm{T}\|_{L_p} \leq \|\mu_h\|_{\mathrm{TV}}$.

finite-dimensional theory (linear algebra)	infinite-dimensional theory (functional analysis)
Euclidean space \mathbb{R}^N , complexification \mathbb{C}^N	function spaces such as the Lebesgue space $L_p(\mathbb{R}^d)$ and the space of tempered distributions $\mathscr{S}'(\mathbb{R}^d)$, among others.
vector $\mathbf{x} = (x_1, \dots, x_N)$ in \mathbb{R}^N or \mathbb{C}^N	function $f(\mathbf{r})$ in $\mathscr{S}'(\mathbb{R}^d)$, $L_p(\mathbb{R}^d)$, etc.
bilinear scalar product $\langle x, y \rangle = \sum_{n=1}^{N} x_n y_n$	$\begin{split} \langle \varphi, g \rangle &= \int \varphi(r) g(r) \mathrm{d} r \\ \varphi &\in \mathscr{S}(\mathbb{R}^d) \text{ (test function), } g \in \mathscr{S}'(\mathbb{R}^d) \text{ (generalized function), or } \\ \varphi &\in L_p(\mathbb{R}^d), \ g \in L_q(\mathbb{R}^d) \text{ with } \frac{1}{p} + \frac{1}{q} = 1, \text{ for instance.} \end{split}$
equality: $\mathbf{x} = \mathbf{y} \iff x_n = y_n$ $\iff \langle \mathbf{u}, \mathbf{x} \rangle = \langle \mathbf{u}, \mathbf{y} \rangle, \ \forall \mathbf{u} \in \mathbb{R}^N$	various notions of equality (depends on the space), such as weak equality of distributions: $f = g \in \mathscr{S}'(\mathbb{R}^d) \iff \langle \varphi, f \rangle = \langle \varphi, g \rangle$ for all $\varphi \in \mathscr{S}(\mathbb{R}^d)$,
$\iff \ x - y\ ^2 = 0$	almost-everywhere equality: $f = g \in L_p(\mathbb{R}^d) \iff \int_{\mathbb{R}^d} f(\mathbf{r}) - g(\mathbf{r}) ^p d\mathbf{r} = 0.$
linear operators $\mathbb{R}^N \to \mathbb{R}^M$	continuous linear operators $\mathscr{S}(\mathbb{R}^d) \to \mathscr{S}'(\mathbb{R}^d)$
$\mathbf{y} = \mathbf{A}\mathbf{x} \Rightarrow y_m = \sum_{n=1}^N a_{mn} x_n$	$g = A\varphi \Rightarrow g(r) = \int_{\mathbb{R}^d} a(r, s)\varphi(s) ds \text{ for some}$ $a \in \mathscr{S}'(\mathbb{R}^d \times \mathbb{R}^d) \text{ (Schwartz' kernel theorem)}$
transpose $\langle x, Ay \rangle = \langle A^{T}x, y \rangle$	adjoint $\langle \varphi, Ag \rangle = \langle A^* \varphi, g \rangle$

Table 3.1 Comparison of notions of linear algebra with those of functional analysis and the theory of distributions (generalized functions). See Sections 3.1-3.3 for an explanation.