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On the notation

Notion of function: conventional vs. abstract interpretation

-Map ¢ : R? — R (or C) such that z — o(x)

- Element of a vector space: p € X

Generic time or space indices: ¢, € = (z1, -+ ,xg) orr = (ry, -+ ,rq)

Equivalent notations: ¢, ¢(+), v(x)

Specific sample values p(xg), s(x1) € R

vs. (continuous) linear functionals ¢ — (f,¢) € R

Sampling property of Dirac distribution: s(xq) = (6(- — xg), s)

(Hypothesis: s is bounded and continuous)

Sets
N,z* Non-negative integers, including 0
z Integers
R Real numbers
R* Non-negative real numbers
C Complex numbers
R4 d-dimensional Euclidean space
z4 d-dimensional integers

Various notations

j Imaginary unit such that j? = -1

[x] Ceiling: smallest integer at least as large as x
Lx] Floor: largest integer not exceeding x

(x1:xp) n-tuple (x1,x2,..., Xn)

£ Norm of the function f (see Section 3.1.2)
||fHL,, Ly-norm of the function f (in the sense of Lebesgue)
llall t ¢,-norm of the sequence a

(p,s) Scalar (or duality) product

(f, 81, L, inner product

v Reversed signal: fV(r) = f(-r)

(f*g)(r) Continuous-domain convolution

(a*Db)[n) Discrete-domain convolution

P(w) Fourier transform of ¢: fpa ¢(r)e @™ dr

f =Z{f} Fourier transform of f (classical or generalized)
f=2YfH Inverse Fourier transform of f

F{fHw) = Fif}(~w) Conjugate Fourier transform of f

Signals, functions, and kernels

f,f©),or f(r) Continuous-domain signal: function RY — R

® Generic test function in & (R%)

yL=L%¢ Operator-like wavelet with smoothing kernel ¢

s, (@, s) Generalized function ,Y(Rd) —R

Lh Measure associated with h: (g, h) = fwd @(r)up(dr)
o Dirac impulse: (@, ) = ¢(0)

6(-—rp) Shifted Dirac impulse




From linear algebra to functional analysis

Infinite-dim counterpart

x = (21, ,xN) ()
(x,y) (f, ) = y f(x)o(x)de
e,, (canonical basis) Dirac distribution: § € S’'(R%)
y = Ax AHe) = | alw.w)rw)y
Transpose of a matrix: L’ Adjoint operator: L*

Normed spaces

Normed space: vector space X equipped with a norm || - || »

Convergent sequence of functions (¢;) in X

limp; =¢ & limfe—giflx =0

Definition
A Banach space is a complete normed space X’;
that is, such that lim; p; = ¢ € X for any convergent sequence (p;) in X.

m Lebesgue space L,(R9), 1 < p < o

1
p
ol = (/Rd lo(x)|P dw) forl <p< oo
p

eSS SUpPcpa [p(x)|  forp = o0

m Space of continuous and bounded functions

Ch(R?) = {f : R? — R continuous and s.t. || f||r.. < +o0} C Loo(RY) ]




Hilbert spaces

Definition A real-valued inner product on a vector space H is a bilinear form H x H — R :
(f,9) — (f, g)# that satisfies the following properties for all f, g, h € H and « € R.

o Linearity: (af, g)3 = a(f, g)n and (f + g, h)3 = (f, h)n + (g, ).
o Symmetry: (f, g)» = (g, f)n-

e Non-negativity: (f, f)z > 0.

o Unicity: (f, f)z = 0 < f = 0.

If all conditions except the last are met, then (f, g)3 is called a semi-inner product.

Definition
A Hilbert space is a complete normed space H equipped with a norm
induced by an inner product: || f|l# = (f, f)x-

Example: (f,g)r, = y f(x)g(z)dz

Schwartz’s space of test functions

Nuclear-Fréchet space (i.e., equipped with a family of semi-norms)
rather than a Banach space

S (Rd): Schwartz’ space of smooth and rapidly-decreasing functions

Family of semi-norms: [|¢||lm.» = sup |2™0™p(x)| forallm,n € N4
xR

limp;=¢ <« lim i — @llmn =0

S(RY) = {o: R 5 R st ||fllm.n < +00, forallm,n € Nd}

Very constrained (and safe) framework

S(RY) C L,(R*) foranyp > 1




Linear operators: continuity property

Definition
An operator A : X — ) where X and ) are vector spaces is linear if, for any
p1,p2 € X and ay,as € R (or C),

A{arp1 + aspa} = a1A{p1} + a2 A{p2}

Definition

Let X', Y be topological spaces. An operator A : X — ) is (sequentially) continuous
(with respect to the topologies of X and )) if, for any convergent sequence (¢;) in X
with limit € X, the sequence (A¢; ) converges to Ap in Y, that i,

Example: The linear operator D" is continuous S(R) — S(R).

Schwartz’ semi-norms: ||¢||;m,n = sup |z D"p(z)| withm,n € N
zeR

”DmOSOi - DmOSOHm,n = ||Dm0{90i - @}Hmm = H‘Pz - QOHm,n—f—mo —0

Examples of continuous operators on S(R%)
Vo € S(RY)
m Multiplication by a polymonial: S(R?) — S(R?)
re(r) =11t rgie(r) € S(RY)
m Differentiation: S(RY) — S(R?)
0™p(r) = Oyt -+ Ofip(r) € S(RY)
m Fourier transform: S(R?) — S(R%)

Flehw) = [ (e ar e SR

F e = [ T p(w) 29

» )i o(r)

10




Bounded operator

Proposition

Consider the linear operator A : X — ) where (X, || - ||x) and (), ]| - ||y) are two
Banach spaces. Then, A is continuous X — ) iff. it is bounded; i.e., iff. there exists
a constant Cy such that, forany f € X

IA{fHly < Coll fllx

m Examples
e Boundedness of (classical) Fourier transform F : L (RY) — C},(R9)

e Convolution operator: T,{f} = h * f
T, is bounded Ly(R%) — Ly(RY) & h e Loo(RY)

2 dw 2 dw

s 12, = [ @) G < IBIE. [ 17 G = 1B 712,

(2m)¢
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Spaces
X, Generic vector spaces (normed or nuclear)
L, ([Rd) Finite-energy functions fRd | f(r) [2dr < oo
Lp([Rd) Functions such that fga |f(r)|P dr <oco
Lpa®Y Functions such that fpa | f(r)(1+171)%|” dr <o
2[R Smooth and compactly supported test functions
2'[R%) Distributions or generalized functions over R%
S RY) Smooth and rapidly decreasing test functions
S (RY Tempered distributions (generalized functions)
Z[RY) Bounded functions with rapid decay
0,(2% Finite-energy sequences ¥ ..z« |a[k]|* < oo
fp(Zd) Sequences such that " ..y« |alk]|” < co
Operators
1d Identity
D= % Derivative
Dqg Finite difference (discrete derivative)
DN Nth-order derivative
on Partial derivative of order n = (ny,...,ng)
L Whitening operator (LSI)
f(w) Frequency response of L (Fourier multiplier)




3.2 DUAL SPACES AND ADJOINT

m Intuition: finite dimensional case Vx,x1,%x2 € R" and Va;,as € R

f(x) : R™ — Ris alinear functional on R™
& fla1xy + asx2) = a1 f(x1) + as f(x2)

& f(x) =fTx = (f,x) for some f € R"
The set of all linear functionals on R™ is a vector space (R™)* isomorphic to R

X — (a1f1 —+ CLQfQ,X> = a1<f1,x> + a2<f2,X>

m Linear operator y — Ay: R”™ — R"

(f,Ay) = (A™f)y)

A: n x m matrix

A* = AT is the adjoint of A f s A*f: R" — R™
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Algebraic vs. continuous duals
General vector space X (normed or nuclear)

Functional on X': a map ¢ — f(¢) that takes X’ to the scalar field R

Notation for linear functionals: f(¢) = (f, ) Vpoe X

The set of all linear functionals on X is a vector space X'* (algebraic dual of X))

(a1 f1 +azfa,0) = a1(f1, ) +az(f2, ),  Vai,az €R

The set of all continuous linear functionals on X’ is a vector space X’ C X*

X' topological or continuous dual of X

Scalar (or duality) product (-, -) is a continuous bilinear functional: X’ x X — R

m Weak-x topology on X’: (f;) converges to f in X’
< lim(fi, ) = (f,p) forallp € X

14




Dual of a Banach space

The dual of a Banach space (X, || - || x) is another Banach space X"’
equipped with the dual norm

lole = sup (ﬂ)

ueX\{0} |||

/ .
m Duals of L, spaces (Lp(RY)) = Ly (RY)  with 14+ L =1

for p € (1, 00)

Heider neaqualty: (/.11 < [ 17(r)e(r)] dr <1171, Il

S — (<f,so>)

pEL,(R\{0} ||90HLp
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Dual of a Hilbert space
H H’
Riesz isomorphism

(u, v*) 3 = (u,v) = (R u, v)gy

The dual of a Hilbert space H is a Hilbert space H' with H' = R~ (H).

Riesz’ representation theorem

Let (H,H’) be a dual pair of Hilbert spaces. Then, for any v € H’, there is a

unique element v* = R{v} € H (the so-called conjugate of v) such that
v(u) = (v*,u)y forallu € H.

Conversely, for any v* € H, the linear functional v : u — (v*, u)4 is continu-

ous with ||v]| = ||v||3 = ||[v*]|% = ||R{v}||%, and hence included in H'.

The linear isometric map R : #' — H that associates any element v € H’ to
its conjugate v* € H is called the Riesz map.
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Dual of Schwartz’ space of test functions

S’(R?): Schwartz’s space of tempered distributions over R?

Generalized functions = S®Y) = | Hon(RY
continuous linear functionals on S(R¢) meZ
H_,(RY)
m Rigged Hilbert spaces: H,,(R?) Ho = Ly(RY)

e matched order n of decay & smoothness:
feH,RY) & ()™O"f € La(RY), [m|,[n| <n

o H,, (RY) C H,, (RY) forng > ny
o (Ha(RY)) =H_,(R?)
e Nuclear structure: H,, 41 = T(H,,)
where T is a nuclear operator SRY = [ Hm(RY)
meZ
17
Adjoint operator
Pair of vector spaces (X', ))) with topological duals (X’,)")
m Linear operator p — Ap: X — Y
(f,Ap) = (A*f, o) A*: )Y — X' is the adjoint of A
V' xYy X' xXx
Example: D: S(R) — S(R) Integration by part
(D, ¢) = | ¢(@)d(x)de = p(2)d(@)| T — | p(x)¢'(x)dz
D*=-D o
[ o |

Generalization: (0™)* = (_1)|nlan with [n| =ny + -+ + ng
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Hermitian inner product vs. duality product

Ly (or hermitian) inner product:  (f,g)r, = [ga f( dx f,g € Lo(RY)

Hermitian transpose: A = A* (Af,9)r, = (f,AHg)r, = (f,A*g)

m Classical Fourier transform

f(w) = F{f}w /f I dr, f € Ly(RY

Plancherel’'s extension F : Ly(RY) — Lo(RY)

<f7 §>L2

Parseval relation: (f,g)r, =

1
(2m)¢

Duality product version:  (f,§) = (£, 9)
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locally convex vector spaces S’ (R%)

Fréchet spaces (countably-normed)

Banach spaces  (eg. L,(R?) withp > 1)

Hilbert spaces  L»(R9)

Nuclear F-spaces S(R?)




3.3 GENERALIZED FUNCTIONS

f(x)
(o) Physical measurement: (i, f) = / o) f(z)dx
R

Family of linear sensors (y;, f):

(@101 + agpo, f) = a1 (e1, f) + ax(v2, f)

Continuity of the measurements with respect to variations in ¢;:

m Notion of weak equality

f=9 & (o f)=(pyg) foral ¢ecSRY

"If it looks like a duck, swims like a duck, and quacks like a duck, then it is (weakly) a duck"
21

What is a generalized function ?

A continuous linear functional on S(R?) (resp. D(R?))

f € 8'(R9): Schwartz’ space of tempered distributions

A rule S(R?) — R that associates a real number (f, ) to every test function ¢

Examples: ¢ — (0(- — rg), ) = @(r0)

An extension of the classical notion of function.

If g(x) is (slowly increasing and) locally integrable, then (g, @) = / g(r)e(r)dr
Rd

Otherwise the “integral” notation (f, ¢) = f(r)e(r)dr is only meant symbolically
Rd
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Operations on generalized functions

Dual extension principle
Given operators U, U* : S(RY) — S(R?) that form an adjoint pair on S(R%) x S(R%).
Their action to §’(R%) — S’ (R?) is extended by defining U f and U* f such that

{(p, Uf) = (U, ),

(o, U*f) = (Ugp, f).

m Examples
= Shiftby ro € R (i, f(- = r0)) = (¢(- + 7o), f)
= nth-order derivative:  (p, 9™ f) = (=1)I™1(9™p, f)

= Convolution: (¢, h* f) = (hY * @, f)

= Fourier transform: (o, F{f}) = (F*{o}, f) = (&, f)
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Generalized Fourier transform

Definition
f = F{f} is the generalized Fourier transform of f € S'(R%) iff.

~

(0, f) = (&, f) forallp € S(RY),

where $(w) = F{p}(w) = /Rd o(r)e @) dp,

m Fundamental property

The generalized Fourier transform is a reversible mapping S’(R¢) — S’(R9)

= feS(RY) & F{f}eS(RY
 FUF=FF1'=1d

Examples of generalized Fourier transforms
» F{0} =1
o Floieom}(w) = (2m)15(w — wo)

o F{rl}w) = Cy ot
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Temporal or spatial domain

Fourier domain

fr)=F{fHr)
Y = f(-r
fr)
fATr)
fr—rp)
ej<r’w0>f(r)
" f(r)
r’f(r)
(g=* fHr)
g(r)f(r)

2m f(-w)
fl—w) = f¥(w)
f-w)

1 fA(A—lw)
|detA|
e‘i("o,w)f(w)
f(w —wo)
(jo)™ f(w)
jlnlanf(w)
g(w) f(w)
@)~ 4@ * f)(w)

Table 3.3 Basic properties of the (generalized) Fourier transform.

Table A.1 Table of canonical regularizations of some singular functions, and their Fourier

transforms. The one-sided power function is r

A
b=

%(|r|1+sign(r)|r|’l) and T denotes the

gamma function. Derivatives of § are also included for completeness.

Singular function Canonical regularization Fourier transform
N r(A+1
rﬂ, @7 - (ja(u)m
-n—-1<Re(l) < - ()
n ey <-n _ oo r3(<p(r)—205i5n71 %)d’

o, (@ 7™ computable but not needed
n=123,... - iU

= [ ”((p(r) - (Zosizn-2 )

n-1_(n-1)

_ %!(0) u(l- r))dr

(non-canonical)
rf, N/A jnnﬁ(") (W) + []w?ﬁ
n=0,12,...
"y (@ 17N —2sin(Z 1) I‘;g/ll/ltll)
—2m -2 < Re(V) < = [ r’l(<p(r)+(p(—r)—
—2m 2i ,(20)

©)

2¥0<ism-1 %) r
Iritsign(r), (.| sign(r) “2jcos(E i sign)
—2m =1 < Re) < = [ rH(p(r) - (-1~
-2m+1 2i+1 ,(2i+1)

)

2% 0<ism-1 - (zq;+1)! ]dr
s N/A 12180 ()
n=0,1,2,...
r'tsign(r), N/A (]w?ﬁ
n=12,...
U, Jiee w dr —jmsign(w)




The kernel theorem

Schwartz’ kernel theorem: first form
Every continuous linear operator A : S(R?) — S'(R?) can be written in the form

P(r) = Alphr) = | alr.s)p(s)s

where a(-, -) is a generalized function in S’(R?¢ x R9).

Generalized impulse response:  a(-, s9) = A{d(- — s0)}

Schwartz’ kernel theorem: second form
Every continuous bilinear form B : S(R%) x S(R%) — R (or C) can be written as

Blongn) = [ alrs)pu(mpa(sidsdr = (o Al2))

= (a, 1 @ Y2)

where a(-, ) is a generalized function in S’(R¢ x R?).

(01 @ p2)(r,8) = p1(r)pa(s) forall g1, 2 € S(RY) -

LS| operators and convolution

LSI: Linear Shift-Invariant

Shift-invariant operator:
U{f(- — 7o) }(r) = U{f}(r — ro) for rg € R?

A continuous linear shift-invariant operator S(RY) — S’(R%) can be written as a convolution

o(r) =5 (e ) = [ pls)hir = )ds

Rd
with some generalized function h € S’(R%).

Kernel theorem with a(r,s) = h(r — s) (LSl property)

Fourier-domain multiplication: F{h * ¢} = @h

m Special case: continuous operator S(R?) — S(R%)

Smooth (and slowly increasing) Fourier multiplier: F{h}(w) = h(w)

M.
Example (rational transfer function): h(w) = Cq H”X,:lgw Zm)
Hn:l(Jw - pn)
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Convolution operators on L,(R%)
m Young inequality for convolution

|h* fllz, < Ih|z, || fllz, forp>1

h € Ly (R?) classical condition for BIBO stability

Definition

An operator T : L,(R%) — L,(R?) is called a L, Fourier multiplier if it is con-
tinuous on L,(R¢) and can be represented as Tf = F‘l{fH}. The function
H : R¢ — C is the frequency response of the underlying filter.

Definition
The norm of the linear operator T : L, (R?) — L, (R?) is given by
TSz,
ITllz, =  sup

rer,rangoy Ifllz,
The operator is said to be bounded if its norm is finite.
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Characterization of Fourier multipliers

Theorem
Let T be a Fourier-multiplier operator with frequency response H : R? — C and
(generalized) impulse response h = F~1{H} = T{6}. Then

1) The operator T is an Ly Fourier multiplier if and only if there exists of a finite
complex-valued Borel measure denoted by s, such that H (w) = [,, e (<), (da).

2) The operator T is an L., Fourier multiplier if and only if H is the Fourier trans-
form of a finite complex-valued Borel measure, as stated in 1).

3) The operator T is an Ly Fourier multiplier if and only if H = h € Lo (R%).

The corresponding operator norms are

1Tz, = IT2e = llpallrv = sup (o, h)
lellLoe <1

1
1Tz, = WHHHLW
where || || Tv is the total variation of the underlying measure. Finally, T is an L,,
Fourier multiplier for the whole range 1 < p < 40 if the condition on H in 1) or 2) is

met with [ T|z, < [lun/lrv-
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finite-dimensional theory (linear algebra)

infinite-dimensional theory (functional
analysis)

Euclidean space RY, complexification CN

function spaces such as the Lebesgue space
Lp (IRd ) and the space of tempered distribu-

tions %' (RY), among others.

vector x = (x1,...,xXy) in RN orcV

function f(r) in &' RY), Lp RD), etc.

bilinear scalar product
(x,y)= er;]:l XnYn

(0,8 =[pr)gr) dr

pe S (RY) (test function), ge CAD) (gen-
eralized function), or

e Lp®Y), g € LgRY) with 5 + 1 = 1, for
instance.

equality: x=y < xp=yn

= (ux)=Wmy), YuecRY

— ||x—y||2 =0

various notions of equality (depends on the
space), such as

weak equality of distributions: f = g €
F'RY = (p,f) = (p,g) for all ¢ €
@Y,

almost-everywhere equality: f = g €
Lp®RY) < fpal f(r) - gr)IP dr =0.

linear operators RN — RM

y=Ax=>ym= ):IIY:I AmnXn

continuous linear operators Sﬂ(Rd) —
S ®RY)

g =Ap = g(r) = [pa a(r,s)p(s) ds for some
aec.d (Rd X Rd) (Schwartz’ kernel theorem)

transpose
(x,Ay) = (ATx,y)

adjoint
(p,Ag) = (A", 8)

Table 3.1 Comparison of notions of linear algebra with those of functional analysis and the

theory of distributions (generalized functions). See Sections 3.1-3.3 for an explanation.




