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On the notation
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Equivalent notations: ','(·),'(x)

Generic time or space indices: t, x = (x1, · · · , xd) or r = (r1, · · · , rd)

Notion of function: conventional vs. abstract interpretation

- Map ' : Rd ! R (or C) such that x 7! '(x)

- Element of a vector space: ' 2 X

Specific sample values '(x0), s(x1) 2 R

'(x)

x0

'(x0)

x

vs. (continuous) linear functionals ' 7! hf,'i 2 R

Sampling property of Dirac distribution: s(x0) = h�(·� x0), si

(Hypothesis: s is bounded and continuous)
xiv Notations

SÆS Symmetric alpha stable
SDE Stochastic differential equation
SNR Signal-to-noise ratio
WSS Wide-sense stationary

Sets

N,Z+ Non-negative integers, including 0
Z Integers
R Real numbers
R+ Non-negative real numbers
C Complex numbers
Rd d-dimensional Euclidean space
Zd d-dimensional integers

Various notations

j Imaginary unit such that j2 =°1
dxe Ceiling: smallest integer at least as large as x
bxc Floor: largest integer not exceeding x
(x1 : xn) n-tuple (x1, x2, . . . , xn)
k f k Norm of the function f (see Section 3.1.2)
k f kLp Lp -norm of the function f (in the sense of Lebesgue)
kak`p `p -norm of the sequence a
h', si Scalar (or duality) product
h f , g iL2 L2 inner product
f _ Reversed signal: f _(r ) = f (°r )
( f § g )(r ) Continuous-domain convolution
(a §b)[n] Discrete-domain convolution
'̂(!) Fourier transform of ':

R

Rd '(r )e°jh!,r i dr

f̂ =F { f } Fourier transform of f (classical or generalized)
f =F°1{ f̂ } Inverse Fourier transform of f̂
F { f }(!) =F { f }(°!) Conjugate Fourier transform of f

Signals, functions, and kernels

f , f (·), or f (r ) Continuous-domain signal: function Rd !R

' Generic test function in S (Rd )
√L = L§¡ Operator-like wavelet with smoothing kernel ¡
s, h', si Generalized function S (Rd ) !R

µh Measure associated with h: h',hi=
R

Rd '(r )µh(dr )
± Dirac impulse: h',±i='(0)
±(·° r0) Shifted Dirac impulse



From linear algebra to functional analysis
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Transpose of a matrix: LT

Infinite-dim counterpart

Adjoint operator: L⇤

y = Ax

Dirac distribution: � 2 S 0(Rd)en (canonical basis)

hx,yi

A{f}(x) =
Z

Rd

a(x,y)f(y)dy

x = (x1, · · · , xN ) f(x)

hf,'i =
Z

Rd

f(x)'(x)dx

Normed spaces
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Lebesgue space Lp(Rd), 1  p  1

Definition

A Banach space is a complete normed space X ;

that is, such that limi 'i = ' 2 X for any convergent sequence ('i) in X .

Space of continuous and bounded functions

Cb(Rd) =
�
f : Rd ! R continuous and s.t. kfkL1 < +1

 
✓ L1(Rd)

Normed space: vector space X equipped with a norm k · kX

Convergent sequence of functions ('i) in X :

lim
i

'i = ' , lim
i

k'� 'ikX = 0

k'kLp =

8
><

>:

✓Z

Rd

|'(x)|p dx

◆ 1
p

for 1  p < 1

ess sup
x2Rd |'(x)| for p = 1



Hilbert spaces
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Definition

A Hilbert space is a complete normed space H equipped with a norm

induced by an inner product: kfkH = hf, fiH.

Example: hf, giL2 =

Z

Rd

f(x)g(x)dx

Definition A real-valued inner product on a vector space H is a bilinear form H ⇥ H ! R :

(f, g) 7! hf, giH that satisfies the following properties for all f, g, h 2 H and ↵ 2 R.

• Linearity: h↵f, giH = ↵hf, giH and hf + g, hiH = hf, hiH + hg, hiH.

• Symmetry: hf, giH = hg, fiH.

• Non-negativity: hf, fiH � 0.

• Unicity: hf, fiH = 0 , f = 0.

If all conditions except the last are met, then hf, giH is called a semi-inner product.

Schwartz’s space of test functions
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lim
i

'i = ' , lim
i

k'i � 'km,n = 0

Family of semi-norms: k'k
m,n = sup

x2Rd

|xm@n'(x)| for all m,n 2 Nd
.

S(Rd): Schwartz’ space of smooth and rapidly-decreasing functions

Nuclear-Fréchet space (i.e., equipped with a family of semi-norms) 
              rather than a Banach space

Very constrained (and safe) framework

S(Rd) ✓ Lp(Rd) for any p � 1

S(Rd) =
�
' : Rd ! R s.t. kfkm,n < +1, for all m,n 2 Nd

 



Linear operators: continuity property
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Example: The linear operator Dm0
is continuous S(R) ! S(R).

Schwartz’ semi-norms: k'k
m,n

= sup
x2R

|xmDn

'(x)| with m,n 2 N

kDm0
'

i

�Dm0
'k

m,n

= kDm0{'
i

� '}k
m,n

= k'
i

� 'k
m,n+m0 ! 0

Definition

An operator A : X ! Y where X and Y are vector spaces is linear if, for any

'1,'2 2 X and a1, a2 2 R (or C),

A{a1'1 + a2'2} = a1A{'1}+ a2A{'2}

Definition

Let X ,Y be topological spaces. An operator A : X ! Y is (sequentially) continuous

(with respect to the topologies of X and Y) if, for any convergent sequence ('i) in X
with limit ' 2 X , the sequence

�
A'i

�
converges to A' in Y , that is,

limi A{'i} = A{limi 'i}.

Examples of continuous operators on 
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S(Rd)

Differentiation: S(Rd) ! S(Rd)

@n'(r) = @n1
r1 · · · @nd

rd '(r) 2 S(Rd)

Multiplication by a polymonial: S(Rd) ! S(Rd)

rn'(r) = rn1
1 · · · rnd

d '(r) 2 S(Rd)

Fourier transform: S(Rd) ! S(Rd)

F{'}(!) =

Z

Rd

e�jhr,!i'(r) dr 2 S(Rd)

F�1{'̂}(r) =
Z

Rd

ejhr,!i'̂(!)
d!

(2⇡)d
= '(r)

8' 2 S(Rd)



Bounded operator
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Examples

• Boundedness of (classical) Fourier transform F : L1(Rd) ! Cb(Rd)

• Convolution operator: Th{f} = h ⇤ f

Th is bounded L2(Rd) ! L2(Rd) , ĥ 2 L1(Rd)

kh ⇤ fk2L2
=

Z

Rd

��ĥ(!)f̂(!)
��2 d!

(2⇡)d
 kĥk2L1

Z

Rd

��f̂(!)
��2 d!

(2⇡)d
= kĥk2L1kfk2L2

Proposition

Consider the linear operator A : X ! Y where (X , k · kX ) and (Y, k · kY) are two

Banach spaces. Then, A is continuous X ! Y iff. it is bounded; i.e., iff. there exists

a constant C0 such that, for any f 2 X

kA{f}kY  C0kfkX

Notations xv

ØL Generalized B-spline associated with the operator L
'int Spline interpolation kernel
Øn
+ =ØDn+1 Causal polynomial B-spline of degree n

xn
+ = max(0, x)n One-sided power function
ØÆ First-order exponential B-spline with pole Æ 2C
Ø(Æ1:ÆN ) N th-order exponential B-spline: ØÆ1 § · · ·§ØÆN

a, a[·], or a[n] Discrete-domain signal: sequence Zd !R

±[n] Discrete Kronecker impulse

Spaces

X , Y Generic vector spaces (normed or nuclear)
L2(Rd ) Finite-energy functions

R

Rd | f (r )|2 dr <1
Lp (Rd ) Functions such that

R

Rd | f (r )|p dr <1
Lp,Æ(Rd ) Functions such that

R

Rd

Ø

Ø f (r )
°

1+|r |
¢ÆØ

Ø

p
dr <1

D(Rd ) Smooth and compactly supported test functions
D0(Rd ) Distributions or generalized functions over Rd

S (Rd ) Smooth and rapidly decreasing test functions
S 0(Rd ) Tempered distributions (generalized functions)
R(Rd ) Bounded functions with rapid decay
`2(Zd ) Finite-energy sequences

P

k2Zd |a[k]|2 <1
`p (Zd ) Sequences such that

P

k2Zd |a[k]|p <1

Operators

Id Identity
D = d

dt Derivative
Dd Finite difference (discrete derivative)
DN N th-order derivative
@n Partial derivative of order n = (n1, . . . ,nd )
L Whitening operator (LSI)
bL(!) Frequency response of L (Fourier multiplier)
ΩL Green’s function of L
L§ Adjoint of L such that h'1,L'2i= hL§'1,'2i
L°1 Right inverse of L such that LL°1 = Id
h(r1,r2) Generalized impulse response of L°1

L°1§ Left inverse of L§ such that (L°1§)L§ = Id
Ld Discrete counterpart of L
NL Null space of L
PÆ First-order differential operator: D°ÆId,Æ 2C
P(Æ1:ÆN ) Differential operator of order N : PÆ1 ± · · ·±PÆN

¢Æ First-order weighted difference
¢(Æ1:ÆN ) N th-order weighted differences: ¢Æ1 ± · · ·±¢ÆN

Notations xv

ØL Generalized B-spline associated with the operator L
'int Spline interpolation kernel
Øn
+ =ØDn+1 Causal polynomial B-spline of degree n

xn
+ = max(0, x)n One-sided power function
ØÆ First-order exponential B-spline with pole Æ 2C
Ø(Æ1:ÆN ) N th-order exponential B-spline: ØÆ1 § · · ·§ØÆN

a, a[·], or a[n] Discrete-domain signal: sequence Zd !R

±[n] Discrete Kronecker impulse

Spaces

X , Y Generic vector spaces (normed or nuclear)
L2(Rd ) Finite-energy functions

R

Rd | f (r )|2 dr <1
Lp (Rd ) Functions such that

R

Rd | f (r )|p dr <1
Lp,Æ(Rd ) Functions such that

R

Rd

Ø

Ø f (r )
°

1+|r |
¢ÆØ

Ø

p
dr <1

D(Rd ) Smooth and compactly supported test functions
D0(Rd ) Distributions or generalized functions over Rd

S (Rd ) Smooth and rapidly decreasing test functions
S 0(Rd ) Tempered distributions (generalized functions)
R(Rd ) Bounded functions with rapid decay
`2(Zd ) Finite-energy sequences

P

k2Zd |a[k]|2 <1
`p (Zd ) Sequences such that

P

k2Zd |a[k]|p <1

Operators

Id Identity
D = d

dt Derivative
Dd Finite difference (discrete derivative)
DN N th-order derivative
@n Partial derivative of order n = (n1, . . . ,nd )
L Whitening operator (LSI)
bL(!) Frequency response of L (Fourier multiplier)
ΩL Green’s function of L
L§ Adjoint of L such that h'1,L'2i= hL§'1,'2i
L°1 Right inverse of L such that LL°1 = Id
h(r1,r2) Generalized impulse response of L°1

L°1§ Left inverse of L§ such that (L°1§)L§ = Id
Ld Discrete counterpart of L
NL Null space of L
PÆ First-order differential operator: D°ÆId,Æ 2C
P(Æ1:ÆN ) Differential operator of order N : PÆ1 ± · · ·±PÆN

¢Æ First-order weighted difference
¢(Æ1:ÆN ) N th-order weighted differences: ¢Æ1 ± · · ·±¢ÆN



3.2 DUAL SPACES AND ADJOINT 
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A⇤ = AT
is the adjoint of A

Linear operator y 7! Ay: Rm ! Rn

A: n⇥m matrix

f 7! A⇤f : Rn ! Rm

8x,x1,x2 2 Rn and 8a1, a2 2 R

The set of all linear functionals on Rn
is a vector space (Rn)⇤ isomorphic to Rn

x 7! ha1f1 + a2f2,xi = a1hf1,xi+ a2hf2,xi

hf ,Ayi = hA⇤f ,yi

Intuition: finite dimensional case

f(x) : Rn ! R is a linear functional on Rn

, f(a1x1 + a2x2) = a1f(x1) + a2f(x2)

, f(x) = f

T
x = hf ,xi for some f 2 Rn

Algebraic vs. continuous duals
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General vector space X (normed or nuclear)

Functional on X : a map ' 7! f(') that takes X to the scalar field R

The set of all linear functionals on X is a vector space X ⇤
(algebraic dual of X )

8' 2 X

The set of all continuous linear functionals on X is a vector space X 0 ✓ X ⇤

X 0
: topological or continuous dual of X

Weak-⇤ topology on X 0
:

Notation for linear functionals: f(') = hf,'i

ha1f1 + a2f2,'i = a1hf1,'i+ a2hf2,'i, 8a1, a2 2 R

(fi) converges to f in X 0

, limihfi,'i = hf,'i for all ' 2 X

Scalar (or duality) product h·, ·i is a continuous bilinear functional: X 0 ⇥ X ! R



Dual of a Banach space
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The dual of a Banach space (X , k · kX ) is another Banach space X 0

equipped with the dual norm

kvkX 0 = sup
u2X\{0}

✓
hv, ui
kukX

◆

Duals of Lp spaces

�
Lp(Rd)

�0
= Lp0(Rd) with 1

p + 1
p0 = 1

Hölder inequality: |hf,'i| 
Z

Rd

|f(r)'(r)| dr  kfkLpk'kLp0

) kfkLp0 = sup
'2Lp(Rd)\{0}

✓
hf,'i
k'kLp

◆

for p 2 (1,1)

Dual of a Hilbert space
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The dual of a Hilbert space H is a Hilbert space H0 with H0 = R�1(H).

Riesz’ representation theorem

Let (H,H0) be a dual pair of Hilbert spaces. Then, for any v 2 H0, there is a

unique element v⇤ = R{v} 2 H (the so-called conjugate of v) such that

v(u) = hv⇤, uiH for all u 2 H.

Conversely, for any v⇤ 2 H, the linear functional v : u 7! hv⇤, uiH is continu-

ous with kvk = kvkH0 = kv⇤kH = kR{v}kH, and hence included in H0.

The linear isometric map R : H0 ! H that associates any element v 2 H0 to

its conjugate v⇤ 2 H is called the Riesz map.

H H0

u

v⇤ = R{v} vR

R�1

hu, v⇤iH = hu, vi = hR�1u, viH0

R�1{u} Riesz isomorphism



H0 = L2(Rd)

H�n(Rd)

S 0(Rd) =
[

m2Z
Hm(Rd)

Hn(Rd)
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Generalized functions = 

S 0(Rd): Schwartz’s space of tempered distributions over Rd

Dual of Schwartz’ space of test functions

S(Rd) =
\

m2Z
Hm(Rd)

continuous linear functionals on S(Rd)

Rigged Hilbert spaces: Hn(Rd)

• matched order n of decay & smoothness:

f 2 Hn(Rd) , (·)m@nf 2 L2(Rd), |m|, |n|  n

• Hn1(Rd) ✓ Hn2(Rd) for n1 � n2

• �Hn(Rd)
�0

= H�n(Rd)

• Nuclear structure: Hn+1 = T
�Hn

�

where T is a nuclear operator

Adjoint operator
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Linear operator ' 7! A': X ! Y

Example: D : S(R) ! S(R)

D⇤ = �D

A⇤ : Y 0 ! X 0
is the adjoint of A

Generalization: (@n)⇤ = (�1)|n|@n
with |n| = n1 + · · ·+ nd

Integration by part

hD',�i =
Z

R
'

0(x)�(x)dx = '(x)�(x)|+1
�1| {z }

=0

�
Z

R
'(x)�0(x)dx

Pair of vector spaces (X ,Y) with topological duals (X 0,Y 0)

hf,A'i = hA⇤f,'i

Y 0 ⇥ Y X 0 ⇥ X



Hermitian inner product vs. duality product
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L2 (or hermitian) inner product: hf, giL2 =
R
Rd f(x)g(x)dx f, g 2 L2(Rd)

Parseval relation: hf, giL2 =
1

(2⇡)d
hf̂ , ĝiL2

hf, ĝi = hf̂ , gi

Hermitian transpose: AH = A⇤ hAf, giL2 = hf,AHgiL2 = hf,A⇤gi

Plancherel’s extension F : L2(Rd) ! L2(Rd)

Duality product version:

Classical Fourier transform

f̂(!) = F{f}(!) =

Z

Rd

f(r)e�jhr,!i dr, f 2 L1(Rd)

Hilbert spaces

locally convex vector spaces

Fréchet spaces (countably-normed)

Banach spaces

Nuclear F-spaces

S 0(Rd)

(e.g., Lp(Rd) with p � 1)

L2(Rd)

S(Rd)



3.3 GENERALIZED FUNCTIONS
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x0
x

f(x)
f(x0)

Continuity of the measurements with respect to variations in 'i:

limi 'i = ' ) limih'i, fi = h', fi

Physical measurement: h', fi =
Z

R
'(x)f(x)dx

"If it looks like a duck, swims like a duck, and quacks like a duck, then it is (weakly) a duck"

Notion of weak equality

f = g , h', fi = h', gi for all ' 2 S(Rd)

Family of linear sensors h'i, fi:

ha1'1 + a2'2, fi = a1h'1, fi+ a2h'2, fi

What is a generalized function ?
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A continuous linear functional on S(Rd) (resp. D(Rd))

f 2 S 0(Rd): Schwartz’ space of tempered distributions

Examples: ' 7! h�(·� r0),'i = '(r0)

Otherwise the “integral” notation hf,'i =
Z

Rd

f(r)'(r)dr is only meant symbolically

An extension of the classical notion of function.

If g(x) is (slowly increasing and) locally integrable, then hg,'i =
Z

Rd

g(r)'(r)dr

A rule S(Rd) ! R that associates a real number hf,'i to every test function '



Operations on generalized functions
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Dual extension principle

Given operators U,U⇤ : S(Rd) ! S(Rd) that form an adjoint pair on S(Rd)⇥S(Rd).

Their action to S 0(Rd) ! S 0(Rd) is extended by defining Uf and U⇤f such that

h',Ufi = hU⇤', fi,
h',U⇤fi = hU', fi.

Examples

Shift by r0 2 Rd
: h', f(·� r0)i = h'(·+ r0), fi

nth-order derivative: h', @nfi = (�1)|n|h@n', fi

Convolution: h', h ⇤ fi = hh_ ⇤ ', fi

Fourier transform: h',F{f}i = hF⇤{'}, fi = h'̂, fi

Generalized Fourier transform
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Definition

f̂ = F{f} is the generalized Fourier transform of f 2 S 0(Rd) iff.

h', f̂i = h'̂, fi for all ' 2 S(Rd),

where '̂(!) = F{'}(!) =

Z

Rd

'(r)e�jhr,!i dr.

Fundamental property

The generalized Fourier transform is a reversible mapping S 0(Rd) ! S 0(Rd)

f 2 S 0(Rd) , F{f} 2 S 0(Rd)

F�1F = FF�1 = Id

Examples of generalized Fourier transforms

F{�} = 1

F{ejh!0,ri}(!) = (2⇡)d�(! � !0)

F{|r|�}(!) = C�
1

|!|�+d



3.3 Generalized functions 37

Temporal or spatial domain Fourier domain

bf (r ) =F { f }(r ) (2º)d f (°!)

f _(r ) = f (°r ) f̂ (°!) = f̂ _(!)

f (r ) f̂ (°!)

f (AT
r ) 1

|detA|
bf (A°1!)

f (r ° r0) e°jhr0,!i
bf (!)

ejhr ,!0i f (r ) bf (!°!0)

@n f (r ) (j!)n

bf (!)

r

n f (r ) j|n|@n

bf (!)

(g § f )(r ) bg (!) bf (!)

g (r ) f (r ) (2º)°d (bg § bf )(!)

Table 3.3 Basic properties of the (generalized) Fourier transform.

3.3.3 The Fourier transform of generalized functions

We have already noted that the Fourier transform F is a reversible operator that
maps the (complexified) space S (Rd ) into itself. The additional relevant property is
that F is self-adjoint: h',F√i= hF',√i, for all ',√ 2S (Rd ). This helps us specify-
ing the generalized Fourier transform of distributions in accordance with the general
extension principle in Definition 3.3.

D E FI N I T I O N 3.4 The generalized Fourier transform of a distribution f 2 S 0(Rd ) is
the distribution f̂ =F { f } 2S 0(Rd ) that satisfies

h', f̂ i= h'̂, f i

for all ' 2 S , where '̂ = F {'} is the classical Fourier transform of ' given by the
integral

'̂(!) =
Z

Rd
e°jhr ,!i'(r ) dr .

For example, since we have
Z

Rd
'(r ) dr = h',1i= '̂(0) = h'̂,±i,

we conclude that the (generalized) Fourier transform of ± is the constant function 1.
The fundamental property of the generalized Fourier transform is that it maps

S 0(Rd ) into itself and that it is invertible with F°1 = 1
(2º)d F where F { f } = F { f _}.

This quasi self-reversibility—also expressed by the first row of Table 3.3—implies that
any operation on generalized functions that is admissible in the space/time domain
has its counterpart in the Fourier domain, and vice versa. For instance, the multiplic-
ation with a smooth function in the Fourier domain corresponds to a convolution in
the signal domain. Consequently, the familiar functional identities concerning the

A.3 Hadamard’s finite part 333

Table A.1 Table of canonical regularizations of some singular functions, and their Fourier

transforms. The one-sided power function is r∏+ = 1
2

≥

|r |∏+ sign(r )|r |∏
¥

and ° denotes the

gamma function. Derivatives of ± are also included for completeness.

Singular function Canonical regularization Fourier transform

r∏+ ,
°n °1 < Re(∏) <°n

h', r̃∏+i

=
R1

0 r∏
≥

'(r )°P

0∑i∑n°1
r i'(i )(0)

i !

¥

dr

°(∏+1)
(j!)∏+1

r°n
+ ,

n = 1,2,3, . . .
h', r̃°n

+ i

=
R1

0 r°n
≥

'(r ) °
°

P

0∑i∑n°2
r i'(i )(0)

i !
¢

° r n°1'(n°1)(0)
i ! u(1° r )

¥

dr
(non-canonical)

computable but not needed

r n
+ ,

n = 0,1,2, . . .
N/A jnº±(n)(!)+ n!

(j!)n+1

|r |∏,
°2m ° 2 < Re(∏) <
°2m

h', |r̃ |∏i
=

R1
0 r∏

≥

'(r )+'(°r )°

2
P

0∑i∑m°1
r 2i'(2i )(0)

(2i )!

¥

dr

°2sin(º2 ∏) °(∏+1)
|!|∏+1

|r |∏sign(r ),
°2m ° 1 < Re(∏) <
°2m +1

h', |r̃ |∏sign(r )i
=

R1
0 r∏

≥

'(r )°'(°r )°

2
P

0∑i∑m°1
r 2i+1'(2i+1)(0)

(2i+1)!

¥

dr

°2jcos(º2 ∏) °(∏+1)
|!|∏+1 sign(!)

r n ,
n = 0,1,2, . . .

N/A jn 2º±(n)(!)

r n sign(r ),
n = 1,2, . . .

N/A 2 n!
(j!)n+1

1/r ,
R+1

0
'(r )°'(°x)

r dr °jºsign(!)

that for the singular integral
R1
°1

'(x)
x dx, the principal value is defined as

p.v.
Z1

°1

'(x)
x

dx = lim
≤!0

Z1

≤

'(x)
x

dx +
Z°≤

°1

'(x)
x

dx

= lim
≤!0

Z1

≤

'(x)°'(°x)
x

dx

=
Z1

0

'(x)°'(°x)
x

dx

=
Z1

°1

'(x)°'(0)
x

dx,

where the last two integrals converge in the sense of Lebesgue.
In essence, Cauchy’s definition of principal value relies on the “infinite parts” of

the integrals
R1

0 and
R0
°1 cancelling out one another. To generalize this idea, con-

sider the integral
Z1

0
'(x) f (x) dx,



The kernel theorem
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('1 ⌦ '2)(r, s) = '1(r)'2(s) for all '1,'2 2 S(Rd)

Generalized impulse response: a(·, s0) = A{�(·� s0)}

= h'1,A{'2}i

Schwartz’ kernel theorem: first form

Every continuous linear operator A : S(Rd) ! S 0(Rd) can be written in the form

'(r) 7! A{'}(r) =
Z

Rd

a(r, s)'(s)ds

where a(·, ·) is a generalized function in S 0(Rd ⇥ Rd).

Schwartz’ kernel theorem: second form

Every continuous bilinear form B : S(Rd)⇥ S(Rd) ! R (or C) can be written as

B('1,'2) =

Z

Rd⇥Rd

a(r, s)'1(r)'2(s)ds dr

= ha,'1 ⌦ '2i

where a(·, ·) is a generalized function in S 0(Rd ⇥ Rd).

LSI operators and convolution
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Shift-invariant operator:

U{f(·� r0)}(r) = U{f}(r � r0) for r0 2 Rd

A continuous linear shift-invariant operator S(Rd) ! S 0(Rd) can be written as a convolution

'(r) 7! (' ⇤ h)(r) =
Z

Rd

'(s)h(r � s)ds

with some generalized function h 2 S 0(Rd).

Kernel theorem with a(r, s) = h(r � s) (LSI property)

LSI: Linear Shift-Invariant

Fourier-domain multiplication: F{h ⇤ '} = '̂ĥ

Special case: continuous operator S(Rd) ! S(Rd)

Example (rational transfer function): ĥ(!) = C0

QM
m=1(j! � zm)

QN
n=1(j! � pn)

Smooth (and slowly increasing) Fourier multiplier: F{h}(!) = ĥ(!)



Convolution operators on
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Lp(Rd)

Young inequality for convolution

kh ⇤ fkLp  khkL1kfkLp for p � 1

h 2 L1(Rd) classical condition for BIBO stability

Definition

An operator T : Lp(Rd) ! Lp(Rd) is called a Lp Fourier multiplier if it is con-

tinuous on Lp(Rd) and can be represented as Tf = F�1{f̂H}. The function

H : Rd ! C is the frequency response of the underlying filter.

Definition

The norm of the linear operator T : Lp(Rd) ! Lp(Rd) is given by

kTkLp = sup
f2Lp(Rd)\{0}

kTfkLp

kfkLp

.

The operator is said to be bounded if its norm is finite.

Characterization of Fourier multipliers
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Theorem

Let T be a Fourier-multiplier operator with frequency response H : Rd ! C and

(generalized) impulse response h = F�1{H} = T{�}. Then

1) The operator T is an L1 Fourier multiplier if and only if there exists of a finite

complex-valued Borel measure denoted by µh such that H(!) =
R
Rd e�jh!,xiµh(dx).

2) The operator T is an L1 Fourier multiplier if and only if H is the Fourier trans-

form of a finite complex-valued Borel measure, as stated in 1).

3) The operator T is an L2 Fourier multiplier if and only if H = ĥ 2 L1(Rd).

The corresponding operator norms are

kTkL1 = kTkL1 = kµhkTV = sup
k'kL11

h', hi

kTkL2 =
1

(2⇡)d/2
kHkL1 ,

where kµhkTV is the total variation of the underlying measure. Finally, T is an Lp

Fourier multiplier for the whole range 1  p  +1 if the condition on H in 1) or 2) is

met with kTkLp  kµhkTV.



26 Mathematical context and background

finite-dimensional theory (linear algebra) infinite-dimensional theory (functional
analysis)

Euclidean space RN , complexification CN function spaces such as the Lebesgue space
Lp (Rd ) and the space of tempered distribu-

tions S 0(Rd ), among others.

vector x = (x1, . . . , xN ) in RN or CN function f (r ) in S 0(Rd ), Lp (Rd ), etc.

bilinear scalar product
hx , yi=PN

n=1 xn yn h', g i=
R

'(r )g (r ) dr

' 2S (Rd ) (test function), g 2S 0(Rd ) (gen-
eralized function), or
' 2 Lp (Rd ), g 2 Lq (Rd ) with 1

p + 1
q = 1, for

instance.

equality: x = y () xn = yn various notions of equality (depends on the
space), such as

() hu, xi= hu, yi, 8u 2RN weak equality of distributions: f = g 2
S 0(Rd ) () h', f i = h', g i for all ' 2
S (Rd ),

() kx ° yk2 = 0 almost-everywhere equality: f = g 2
Lp (Rd ) ()

R

Rd | f (r )° g (r )|p dr = 0.

linear operators RN !RM continuous linear operators S (Rd ) !
S 0(Rd )

y = Ax ) ym =PN
n=1 amn xn g = A') g (r ) =

R

Rd a(r , s)'(s) ds for some

a 2S 0(Rd£Rd ) (Schwartz’ kernel theorem)

transpose adjoint
hx ,Ayi= hAT

x , yi h',Ag i= hA§', g i

Table 3.1 Comparison of notions of linear algebra with those of functional analysis and the

theory of distributions (generalized functions). See Sections 3.1-3.3 for an explanation.

finite-dimensional infinite-dimensional

random variable X in RN generalized stochastic process s in S 0

probability measure PX on RN probability measure Ps on S 0

PX (E) = Prob(X 2 E) =
R

E pX (x) dx (pX is
a generalized [i.e., hybrid] pdf)

Ps (E) = Prob(s 2 E) =
R

E Ps (dg )

for suitable subsets E ΩRN for suitable subsets E ΩS 0

characteristic function characteristic functional
cPX (!) = E{ejh!,X i} =

R

RN ejh!,xipX (x) dx ,
! 2RN

cPs (') = E{ejh',si} =
R

S 0 ejh',g iPs (dg ),
' 2S

Table 3.2 Comparison of notions of finite-dimensional statistical calculus with the theory

of generalized stochastic processes. See Sections 3.4 for an explanation.


